栈和队列
20. 有效的括号
class Solution {
public boolean isValid(String s) {
Map<Character, Character> map = new HashMap<>();
map.put('(', ')');
map.put('{', '}');
map.put('[', ']');
Stack<Character> stack = new Stack<>();
for (int i = 0; i < s.length(); i++) {
Character ch = s.charAt(i);
if (ch == '(' || ch == '{' || ch == '[') {
stack.push(ch);
} else if (stack.isEmpty() || ch != map.get(stack.pop())) {
return false;
}
}
return stack.isEmpty();
}
}
144. 二叉树的前序遍历
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
// 递归方式
if (root == null) {
return Collections.emptyList();
}
List<Integer> list = new ArrayList<>();
list.add(root.val);
list.addAll(preorderTraversal(root.left));
list.addAll(preorderTraversal(root.right));
return list;
}
}
class Solution {
private List<Integer> list = new ArrayList<>();
public List<Integer> preorderTraversal(TreeNode root) {
// 非递归方式
Stack<TreeNode> stack = new Stack<>();
TreeNode node = root;
while (node != null || !stack.empty()) {
if (node != null) {
stack.push(node);
list.add(node.val);
node = node.left;
} else {
node = stack.pop().right;
}
}
return list;
}
}
94. 二叉树的中序遍历
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
// 递归方式
if (root == null) {
return Collections.emptyList();
}
List<Integer> list = new ArrayList<>();
list.addAll(inorderTraversal(root.left));
list.add(root.val);
list.addAll(inorderTraversal(root.right));
return list;
}
}
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
// 非递归方式
List<Integer> result = new ArrayList<>();
Stack<TreeNode> stack = new Stack<>();
TreeNode node = root;
while (node != null || !stack.empty()) {
if (node != null) {
stack.push(node);
node = node.left;
} else {
TreeNode top = stack.pop();
result.add(top.val);
node = top.right;
}
}
return result;
}
}
145. 二叉树的后序遍历
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
// 递归方式
if (root == null) {
return Collections.emptyList();
}
List<Integer> list = new ArrayList<>();
list.addAll(postorderTraversal(root.left));
list.addAll(postorderTraversal(root.right));
list.add(root.val);
return list;
}
}
class Solution {
public List<Integer> postorderTraversal(TreeNode root) {
// 非递归方式
List<Integer> result = new ArrayList<>();
Stack<TreeNode> stack = new Stack<>();
TreeNode node = root;
while (node != null || !stack.empty()) {
if (node != null) {
stack.push(node);
result.add(node.val);
node = node.right;
} else {
node = stack.pop().left;
}
}
Collections.reverse(result);
return result;
}
}
https://leetcode.cn/problems/binary-tree-postorder-traversal
102. 二叉树的层序遍历
class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
if (root == null) {
return Collections.emptyList();
}
List<List<Integer>> result = new ArrayList<>();
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
int size = queue.size();
List<Integer> list = new ArrayList<>();
for (int i = 0; i < size; i++) {
TreeNode node = queue.poll();
list.add(node.val);
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
}
result.add(list);
}
return result;
}
}
https://leetcode.cn/problems/binary-tree-level-order-traversal
347. 前K个高频元素
class Solution {
public int[] topKFrequent(int[] nums, int k) {
Map<Integer, Integer> freq = new HashMap<>();
for (int num : nums) {
freq.compute(num, (kk, v) -> v == null ? 1 : v + 1);
}
PriorityQueue<Map.Entry<Integer, Integer>> queue = new PriorityQueue<>(
(e1, e2) -> {
return e1.getValue() - e2.getValue();
}
);
for (Map.Entry<Integer, Integer> entry : freq.entrySet()) {
if (queue.size() == k) {
if (queue.peek().getValue() < entry.getValue()) {
queue.poll();
queue.offer(entry);
}
} else {
queue.offer(entry);
}
}
int[] result = new int[k];
int i = 0;
while(!queue.isEmpty()) {
result[i++] = queue.poll().getKey();
}
return result;
}
}
License:
CC BY 4.0